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ACCURATE MONOTONICITY PRESERVING CUBIC INTERPOLATION*
JAMES M. HYMANt

Abstract. A simple and effective algorithm to construct a monotonicity preserving cubic Hermite
interpolant for data with rapid variations is presented. Constraining the derivatives of the interpolant
according to geometric considerations makes the interpolant consistent with local monotonicity properties -
of the data. Numerical examples are given that compare the quallty and accuracy of the proposed
interpolation method with other standard interpolants.
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1. Introduction. Piecewise polynomial interpolation is used to deduce probabie
values for an implied function defined at a discrete set of points. For an accurate
interpolation, we must carefully retain crucial properties of the data (such as monoton-
icity or convexity), and we must not introduce details or artifacts that cannot be
ascertained from the data. This requires that the interpolant be designed according -
to both geometric and algebraic considerations.

- The geometric qualities of an interpolant are based on how well the interpolated
curve reflects the intrinsic shape inferred by the data points. A good geometric
interpolant will produce a curve similar to the visually pleasing one of a draftsman.
Although some mathematical properties, such as those that preserve monotonicity
and convexity, can describe the goodness of fit in a geometric sense, choosing the
better curve often is a heuristic deClSIOIl based on human judgment rather than on
firm mathematical theory.

A good geometric interpolant is most important when the data arise from a
physical experiment and an underlying mathematical structure does not exist. For
these data sets, geometric considerations such as preventing spurious behavior near
rapid changes in the data may be more important than the method’s asymptotic
accuracy. In fact, maintaining monotonicity or convexity in the interpolation process
may be necessary to represent physical reality. For example, if the data come from
an equation-of-state table for density versus pressure, then a nonmonotone interpolant
will have a negative derivative and will imply an imaginary sound speed for the material
[10]. This error can destroy the accuracy of any calculation based on the interpolated
data.

The functional or algebraic properties of a good interpolant in classic approxima-
tion theory are defined more precisely [2]. They include the order of accuracy as the
mesh spacing becomes arbitrarily small, continuity or smoothness of some derivative
of the interpolant, and invariance or linearity properties such as

1y ~ Plaf+g)=aPf+Pg

where P is the interpolation operator, a is a scalar and f and g are functions. Note
that none of these properties guarantees a good geometric interpolant.

Another consideration is a method’s practicality, as evidenced by its simplicity,
efficiency, and storage requirements. In this report, we restrict our analysis to local
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piecewise polynomial interpolants that, when compared to other methods, rate high
in these three categories.

We have developed and tested a practical algorithm that is excellent both
geometrically and algebraically and is highly accurate when monotonicity properties
of the interpolant do not intervene. Loss of accuracy in favor of shape preservation
occurs only at isolated points where the grid is rough compared to the solution variation.

First, we briefly describe the piecewise polynomial cubic Hermite interpolant and
the restrictions sufficient to guarantee monotonicity. We then describe some possible
algorithms that compute the derivatives needed by the interpolant at the mesh points,
and we give numerical examples that compare our method to similar methods.

2. Cubic Hermite interpolation. Let the mesh {x;}{'=; be apartitionx; <x,<-::<
xn of the interval [x,, x,], and let {f;}, f; = f(x:), be the corresponding data points. The
local mesh spacingis Ax;+1/2 = X;+1 — X;, and the slope of the piecewise linear interpolant
between the data points is S;.1/2= Af,+1/2/Ax,+1/2 The data are locally monotone at
x; if S;+1/28:-1/2>0. The interpolant is piecewise monotone if (Pf)(x) is monotonc
between f; and fi.1 for x between x; and x:.,. The interpolant Pf is class C* if (Pf)(x)
is continuous and has continuous derivatives for all orders less than or equal to k.

A. The interpolation formula. Given the data points {f;}, a numerical approxima-
tion of the slope f; at x; is calculated for 1=/ =n. The cubic Hermite interpolant
then is defined for 1=i<n as : :

2.1) P(x)=cy+(x —x)ca+(x —x:)’ca+(x —x:)°ca
where x; =x =x;.1,

Cl=fi’ c2=fi’
_38iv1/2—fir1 = 2f, s = _2Si12=fis1=hi

4 2
Axi+1/2 ’ AXi+1/2

The interpolant (2.1) has a continuous first derivative, p(x) € C! and possibly, but
not necessarily, a continuous second derivative. The continuity of the second derivative
and the order of accuracy depend on how {f} are calculated.

Note that once {f;} are given, (2.1) becomes a local interpolation formula. By
changing the value of f; or fiata data point, the interpolant changes only in the
region [x;-1, X;+1]. If the calculation of f also is local, only nearby data points need
be available when interpolating between x; and x;.;. This localness is important
when storage requirements are critical as is the case for very large data sets or
multidimensional interpolation.

Localness of the interpolant also is desirable when data are bemg readjusted a
few points at a time. This occurs in interactive graphics routines to avoid recalculating

the interpolation function at all data points.

The numerical approximation of {f,} which makes (2.1) a C? 1nterpolant (for
example, the complete spline mterpolant ), is not local. Thus, to gain total localness
for (2.1), we must sacrifice global continuity in the second derivative.

B. Monotonicity. Even when {f;} are defined accurately, additional constraints
may be necessary because (2.1) may fail to produce an acceptable interpolant in the
geometric sense for certain data sets. A simple generalization of what was recognized
by de Boor and Swartz [3] is that if the data are locally monotonically increasing at
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x;, and if
2.2) 0=f; =3 min (Sj-1/2, Sj+1/2)

for j=i or i +1, then the resulting interpolant is monotone in [x;, x;.,]. Fritsch and
Carlson [5] independently found an extension of this criteria giving a necessary and
sufficient condition for (2.1) to be monotone. The de Boor-Swartz criterion is a square
inscribed within the Fritsch-Carlson monotonicity region.

Note that if {f;} are calculated to make the resulting interpolant C?, then (2. 2)
may not be satisfied. That is, there are monotone data sets for which there is no C?
piecewise cubic Hermite interpolant.

When the data are locally monotone, we restrict {f;} to the de Boor-Swartz
piecewise monotonicity range of (2.2) as follows. After calculating an accurate approxi-.
mation of f; (for instance, finite differences or by the complete spline formula), we
project it to the allowed monotonicity region according to

min [max (0, f;), 385a] if 0<Skin,

2.3) £ «{ max [min (0, £.), 38%a] if 0> S e,
' 0 if 0=S;_1/251+1/2,
where
Smin =min (Si—1/2, Si+1/2);,  Stnax =max (Si=1/2, Six1/2)-

Near the boundary, the de Boor-Swartz constralnt can be used by letting S_;» =
S12 and S,+1/2 _Sn -1/2.

When an f; associated with a complete spline interpolant falls outside the range
of (2.2), as it inevitably will when the variation between the data points is large,
resetting f; according to (2.3) will cause the second derivative of the interpolant to
jump where f; was reset and at the two nearest mesh points.

If the underlying function is strictly monotone and sufficiently smooth, and f;
is an accurate approximation to the derivative at x;, then as the mesh is refined, (2.2)
will be satisfied in the limit, because

(2.4) 'gxf“ =f,~+O(Ax?)=S,-+1/2+O(Ax)=Si_1/2+O(Ax).

Thus, the interpolant is restricted by geometric considerations only when the mesh is
coarse and the asymptotic accuracy in f is meaningless. When the mesh accurately
resolves the function implied by the data, the accuracy in f is retained because (2.2)
will be satisfied. _

When the data are not locally monotone, the interpolant also must have an
extrema. Retaining piecewise monotonicity would require that f;=0 and would
“clip” the interpolant by forcing inter-interval monotonicity on nonmonotone data.
However, the piecewise monotonicity constraint can be relaxed in the interval pair
next to the extrema to produce (in the author’s opinion) a more visually pleasing
curve. But if a new constraint is imposed at extrema, the change in decision algorithms
must still produce a stable interpolant. That is, a small change in the data should not
create a large change in the interpolant. If we remove all constraints on the interpolant
near locally nonmonotone data while retaining (2.3) elsewhere, the resulting inter-
polant will be unstable.
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We chose to extend (2.2) by requiring that f; have the same sign as ongmally
calculated, and that

(25) » If,' =3 min ([Sif.yzl, iSi+1_/2l)-
The constraining function extending (2.3) is

e {min [max (0, £;), 3 min (|Si-1/2|, [Si+1/2)], o> O,

2.6 , : .
2.6) max [min (0, f;), =3 min (|Si-1/2], |Si+1/21)]; o <0,

where o =sign ( ;). The sign function sign (S) =1 if S20 and ~1 otherwise.

Often the monotonicity of the interpolant’s derivative is an important quality
that can be incorporated into the interpolant; if the data are convex, a good geometric
interpolant should preserve this convexity. However, a C* convexity preservmg cubic
Hermite interpolant does not exist for all data sets [11]. For example, a C convex
interpolant does not exist for f =x +|x| when x =0 is a data pomt If the C* constraint
is dropped, restrlctlons similar to (2.6) can be incorporated in (2.1) to preserve
convexity [7]. _

A simple, necessary but not sufficient, and often effective convexity preserving
constraint involves limiting the {f;} so that

2.7) - min (S;-1/2, Si+1/2) =f =max (Si-1/2, Si+1/2)
- by using
(2.8) f; < max {min [f, max (Si-1/2, Si+1/2)], min (Si-1/2, Siv1/2)}.

3. Derivative approximation. The order of accuracy of (2.1) can be, at best, one
order higher than the order of accuracy of f. Therefore, it is prudent to calculate
f; accurately whenever possible. The difference approximations can be divided into
two classes; local and nonlocal. The local schemes use only f values near x; to calculate
f.. The nonlocal schemes use all {f;} values and obtain {f;} by solving a linear system
of equations.

A. Local methods. De Boor and Swartz have shown that there are no linear
algorithms yielding derivative approximations above first-order that also automatically
satisfy (2.2). There are, however, many nonlinear formulas that do. The Butland [1]
algorithm, for example, yields {f;} which automatically satisfies (2.2) and is second-
order on a uniform grid. The Fritsch-Butland [4] algorithm listed in Table 1 is a slight
modification of this formula.

The parabolic interpolation method in Table 1 is linear, and the resulting {3
do not automatically satisfy (2.2). This formula can be multiplied by a nonlinear factor
with magnitude 1+ O(Ax?) to give the monotonicity preserving formula

(2+0)S;+1/251-1/2 Axi—1/2Si+12+Ax ;+1/2S;—1/2
S%12+87 12 +08i41/281-12 Axi_y12+Ax;i_1/2

@1 fi=

This formula is second-order for monotone data when

Axiv1/2 Axi—l/Z)

—2<0§1+3min( , .
Axi—1/2 Axiv1/2

The tests for the resulting interpolant with 6 =1 are not included in this report, but
they are very similar to and only slightly less accurate than the monotonicity constrained
parabolic interpolant.
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TABLE 1
Local formulas for f; and their order of accuracy for smooth functions and mesh variations.

Method Formula for f, Order of accuracy
_ + -
Akima® » |S;i+3/2 = Sis1/2lSi-1/2 fs ~1/2—8; —3/2|S.+1/2 0(x?)
1Si+3/2 = Si+1/2l +18i-1/2— Si-3/2]
Fritsch-Butland" —g's—'“—s—-““i— O(Ax)
Smax +2$:nin
) Axi_ . + Ax; A
Parabolic® Xi-1/28+172F AXi11/28i 12 0(bx?)
Xi+1 = Xi-1
Fourth-order finite difference® fia® 8finy = 8fis Hfia oax*Y
’ ~Xi42+8xi01— 8%+ X2

*See [2]. ® See [4]. © See [9]. ¢ See [9].

The fourth-order finite difference method [9] in Table 1 is based on first mapping

{x;} to a standard equally spaced reference grid {r;}, and then approximating each term
in the identity

(3.2) | gf=g(%) —1,

with centered fourth-order finite differences for an equally spaced grid. If the mapping
from x into r is not sufficiently smooth (that is, certain high derivatives of the map
are not bounded independent of n), the order of accuracy of the method will be reduced
accordingly. Thus, the finite difference formula is fourth-order on a smoothly varying
mesh, but only first-order on a rougher mesh and, in fact, could become singular on
a mesh having a local mesh ratio greater than 3.5. When this is the case, the parabolic
method is to be preferred.

The Akima [2] and Fritsch-Butland formulas are nonlinear algorithms for each
f.. Consequently, the sum of the interpolants for data sets (x, f) and (x, g) is different
from the interpolant for the sum of the data sets (x, f + z). The other formulas do not
have this defect in their initial approximations of . However, after filtering according
to (2.6), none of the interpolants are additive in the sense of (1.1) for f=x +|x|,
g =x —|x| when x =0 is a data point.

B. Nonlocal methods. The most common nonlocal method for computing fi is
the “not-a-knot” C? spline interpolation method [2], where f; is O(Ax>) on an
unequally spaced mesh or O(Ax*) away frém the boundary on an equally spaced

" mesh. The f;'s are calculated so that the resultmg interpolant has a continuous second

derivative at the knots. As mentioned in § 2 the C” spline interpolant will not necessarily
satisfy (2.2) for monotone data. By allowing isolated discontinuities in the second
derivative, a slightly deficient C' monotone spline mterpolant can be constructed in
various ways. A possible solution is to filter the C? spline {f;} according to (2.6).
This is the approach taken in the numerical examples presented here.

An algorithm that keeps the number of jumps in the second derivative small
involves first computing { f:} for the complete spline interpolant in the interval [x4, X, ].
If the interpolant is not locally monotone, we locate point x; where f; is farthest
outside the monotonicity region. We redefine f; according to (2.6) and solve for the
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complete spline interpolant in [x1, x;] and [x;, x,,], using f; and f; as boundary condi-~
tions. The resulting interpolant will have a break in the second derivative only at x;.

If none of the resulting {f;} violate (2.6), we are finished. If some do violate (2.6),

we repeat the process, break [x1, x;] or [x; x,.] into smaller subregions and continue.
This algorithm will always terminate if f; and f, are given at the boundaries and
satisfy (2.6).

Another nonlocal approximatijon to f is the Fntsch—Carlson algorithm [5]. Thls
method provides an approximation of f that preserves piecewise monotonicity in
(2.1) with curves geometrically similar to those produced by the Fritsch-Butland
method. Although we have not compared the Fritsch-Carlson method to the other
methods in this report, we have included an example of specific data from their paper
[5]. From this example and other similar ones from their paper, we have found that
the monotonicity constrained algorithms using (2.3) or (2.6) perform very similarly
to the Fritsch—Carlson algorithm. The major difference is that the constraints (2.3)
and (2.6) are much easier to implement. Also the behavior of the (2.6) constrained
interpolant at extrema in nonmonotone data sets is different. The Fritsch-Carlson
algorithm clips the interpolant like the constraint (2.3) does.

C. Boundaries. At the boundaries we will use either the not-a-knot option for
splines [2] or an uncentered difference approximation. The second-order uncentered
parabolic method used with the Akima, Fritsch-Butland, and parabolic algorithms is

< fi= (2 Axiv1/2+ AXis3/2)Siv1/2 = Bxir1/28i+3/2
l AX;y1/2+ DXivas2

or

(2 Axi—1/2+ Axi3/2)Si-1/2— Axi—1/25; 32
Axl 1/2+Axl"‘3/2

fi=

The third-order uncentered finite difference approximations used with the fourth order
interior formula are

_22f, + 36f,'+1 - 18_f,‘+2 + 4fi+3

fi N '—'22x,' + 36x,'+1 - 18x,'+2 + 4x,~+3 ’
fi= =2fi-1=3fi +6fiv1—fira
b =21 3%+ 6X— Xivn
f 22— 36fi_1+ 18fi>—4fi3
P 22x;,—36x;_1+18x; 5 —4x;i 35
f~ - 2fi+1 + 3f, - 6f,'..1 +fi—2

2%;41+ 3% —6%;1 +Xi—2

4. Numerical examples. The geometric and accuracy properties of the inter-
polants are compared on both smoothly varying and rough data sets. When the
derivatives are constrained by the extended de Boor-Swartz monotonicity limit (2.6),
we call the resulting interpolant monotonically constrained (MC).
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FIG. 1. Interpolation curves for the RPN 15A data.
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A. Monotone example. The Fritsch—Carlson RPN 15A data have been used to
compare many different algorithms [4], [5], [8], some not included in this report.
The data points are

x f
7.99 0
8.09 2.76429E -5
8.19 4.37498E-2
8.7 0.169183
9.2 0.469428
10 0.943740
12 0.998636
15 0.999919
20 0.999994

Figure 1 shows interpolation curves of the Akima, Fritsch-Butland, parabolic,
fourth-order finite difference, complete spline, MC parabolic, MC fourth-order finite
difference, and MC spline methods. These data show clearly that the Fritsch-Butland
and MC methods are geometrically superior to the unconstrained methods. The simple
constraint of (2.6) can convert an unacceptable geometric interpolant, such as the
complete spline, into an excellent one. Note that the Akima algorithm, which was
designed as a good geometric interpolant, fails to preserve monotonicity in this
relatively simple example.

B. Nonmonotone example. To interpolate the monotone function f(x)=e ™,
xe[—1.7, 1.9], the mesh was equally spaced with Ax =3.6/(n —1). This domain was
chosen so the mesh points would not be symmetrical about the point of symmetry for
the function.

Figure 2 shows that the higher order MC interpolants can be geometrically
superior to the Akima, Fritsch-Butland, parabolic and the unconstrained interpolants
when n =3§.

TABLE 2
Comparison of the methods for f(x) = e
L, error
Method - n=5 n=9 n=17 n=33.
Akima . 6.0E-2 6.4E-3 1.0E-3- 1.3E-4
Fritsch-Butland 44E-2 7.3E-3 2.4E-3 1.6E-4
Parabolic method 39E-2 41E-3 4.1E-5 43E-5
Finite difference 22E-2 34E-3 74E-5 2.3E-6
Complete spline 35E-2 2.0E-3 .. 40E-5 1.8E-6
MC parabolic 39E-2 41E-3 1.9E-3 43E-5
MC finite difference 1.5E-2 34E-3 1.9E-3 2.3E-6
MC spline 1.7E-2 2.0E-3 1.9E-3 1.8E-6
In Table 2, the errors,
1.9 1/2

L, error= (I

[ENe-e )
1.7
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of the interpolants are compared as the mesh is refined. Note that the higher order
‘MC finite difference and spline methods are more accurate than the other methods
both on the fine and coarse grids.

The MC methods agree with the corresponding unconstrained methods when
n =9 and 33, but not when n =17, because the nonmonotonicity of the underlying
function is being interpolated.

5. Summary and conclusions. When only geometric considerations are important,
any interpolant constrained to stay within the de Boor-Swartz monotonicity limits
using algorithm (2.6) is acceptable. The Fritsch-Butland does this automatically (that
is, there are no conditional statements) but the approximating derivatives in other
procedures must be filtered.

When both geometric and accuracy considerations are important, the lower order
methods (Akima, Fritsch-Butland, and parabolic) have larger truncation errors than
the higher order constrained methods.

Therefore, we recommend first computing an approximation f; to df/dx at the
mesh points, using either the local fourth-order finite difference method (Table 1) or
the nonlocal, but smoother, complete spline approximation. Before interpolating using
(2.1), we filter {f;} with (2.6), so the interpolant will retain the important local
monotonicity properties of the data.

The simplicity of the filtering approach and the dramatic 1mprovements in the
interpolation curve far outweigh the cost of the extra few lines of code. Analysis of
our numerical examples indicates that most cubic Hermite interpolation programs
would be more versatile, robust, and often more accurate, if a monotonicity constraint
such as (2.6) were an option.
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